

Molecular genetic identification of planktonic bacteria in the Yenisei River basin and experimental study of their biogeochemical functions

Olesya V. Kolmakova

Siberian Federal University Institute of Biophysics of Siberian Branch of Russian Academy of Science

Scienfitic Advisor: **Prof. Dr. Michail I. Gladyshev**

dissolved organic matter

Methods of bacterioplankton species identification

Sequencing methods

Kolmakova O.V. (2013) Contemporary methods for identification of bacterioplankton species-specific biogeochemical functions. Journal of Siberian Federal University. Biology. Vol. 1. № 6. P. 73-95 (in Russian)

Cultivation of a natural pelagic community in experimental mesocosms with nutrient additions combined with molecular genetic identification of bacterial species consuming the added nutrients

Objectives

- 1. To study the biodiversity of bacterioplankton in the Yenisei River by next-generation sequencing
- 2. To identify bacteria consuming certain kinds of amino acids in a natural planktonic community
- 3. To study the seasonal dynamics of bacterial community response to the addition of various amino acids

Study of the Yenisei River bacterioplankton using molecular genetic techniques

Groimpletval ¢! RV/ASENCE Ecol 2014 The PARTNERS program Yenisei River research cruise 118001ibm, 24 June 2004

Wheelford: NGS-blaskedcstoundeyliobfrary, Soungeriale quempoinsignion of a large river throughout 1800 km

Tested hypotheses

- Alpha diversity (diversity inside a community) of planktonic bacteria increases monotonously downstream
- 2. Beta diversity (diversity between communities) of planktonic bacteria in the river is shaped by the surrounding landscape (biome)

Yensei River water sampling for bacterioplankton biodiversity study

• 1800 km

Dudinka

reika River Nizhniaia

Turukhansk

Yeniseisk

Krasnoyarsk

Tunguska River

Podkamennaia Tunguska River

Angara River

100 km

River

Sampling

stations are

marked by

arrows and

transect

number

- 12-28 June 2012
- 30 depth-integrated samples =

10 transects × 3 sampling sites:

- ✓ right bank
- ✓ left bank
- mainstream

Low-pressure pump

Yenisei River bacterial community analysis by NGS

Major groups of the Yenisei River water bacteria

No	Phyla	OTU
1	Proteobacteria	914
2	Actinobacteria	837
3	Unknown bacteria	552
4	Bacteroidetes	200
5	Verrucomicrobia	162
6	Firmicutes	60
7	Planctomycetes	58
8	TM7 genera incertae sedis	58
9	Cyanobacteria	55
10	Acidobacteria	37
11	Chlamydiae	32

No	Phyla	ΟΤυ
12	OD1 genera incertae sedis	13
13	Armatimonadetes	9
14	Chloroflexi	7
15	Gemmatimonadetes	7
16	SR1 genera incertae sedis	5
17	Deinococcus-Thermus	4
18	Fusobacteria	4
19	OP11 genera incertae sedis	4
20	Euryarchaeota	2
21	Chlorobi	1
22	Nitrospirae	1
	Total	3022

nucleotide sequences are deposited in The Sequence Read Archive http://www.ncbi.nlm.nih.gov/sra Accession number SRP036054

Relative abundance of bacterial phyla in the Yenisei River, June 2012

<u>15</u>	1m	1r	11	2m	2r	21	3 m	3r	31	4 m	4r	4 1	5 m	5r	51	6m	6 r	<u>61</u>	7m	7r	71	8 m	8r	81	9m	9r	91 1	10m	10r
1r	0.46	1.00																											
1 1	0.70	0.56	1.00																										
2m	0.47	0.40	0.44	1.00																									
2r	0.42	0.40	0.45	0.53	1.00													E	Bra	۹Ų-	·Cı	Jrt	tis	Sİ	m	ila	rit	:V	
2 l	0.51	0.42	0.49	0.58	0.47	1.00													rr					r I.				-	
3m	0.24	0.40	0.33	0.21	0.34	0.20	1.00										С	06			en	TS	01		a	CTE	eria	al	
3r	0.39	0.44	0.47	0.41	0.55	0.38	0.53	1.00														h	. +-		!: .				
31	0.40	0.44	0.47	0.36	0.51	0.35	0.55	0.69	1.00													De	210		IIV	er	511	• y	
4m	0.38	0.43	0.47	0.35	0.48	0.33	0.59	0.71	0.69	1.00																			
4r	0.23	0.33	0.28	0.24	0.36	0.18	0.42	0.44	0.47	0.44	1.00																		
4 1	0.33	0.40	0.42	0.32	0.43	0.30	0.63	0.65	0.67	0.70	0.45	1.00																	
5m	0.36	0.32	0.37	0.41	0.47	0.34	0.31	0.53	0.46	0.50	0.30	0.44	1.00																
5r	0.36	0.38	0.41	0.36	0.49	0.31	0.44	0.60	0.56	0.60	0.44	0.54	0.64	1.00															
51	0.33	0.31	0.37	0.39	0.55	0.35	0.40	0.57	0.54	0.56	0.36	0.51	0.55	0.59	1.00														
6m	0.41	0.39	0.41	0.44	0.49	0.34	0.38	0.53	0.52	0.52	0.38	0.46	0.54	0.59	0.55	1.00													
6r	0.31	0.34	0.32	0.40	0.40	0.27	0.32	0.38	0.40	0.36	0.46	0.32	0.33	0.42	0.36	0.55	1.00												
61	0.27	0.33	0.32	0.22	0.35	0.19	0.50	0.49	0.50	0.54	0.42	0.50	0.39	0.50	0.51	0.48	0.39	1.00											
7m -	0.23	0.33	0.29	0.21	0.31	0.17	0.55	0.45	0.47	0.48	0.43	0.49	0.30	0.43	0.39	0.43	0.40	0.60	1.00										
7r	0.22	0.34	0.26	0.23	0.31	0.18	0.51	0.40	0.42	0.42	0.49	0.41	0.29	0.41	0.35	0.45	0.52	0.51	0.55	1.00									
71	0.28	0.35	0.33	0.25	0.36	0.22	0.54	0.51	0.51	0.54	0.39	0.53	0.41	0.53	0.52	0.50	0.39	0.65	0.65	0.52	1.00								
8m	0.25	0.32	0.31	0.22	0.35	0.18	0.53	0.48	0.50	0.52	0.47	0.50	0.37	0.50	0.45	0.51	0.44	0.67	0.69	0.55	0.66	1.00	1 0 0						
ðr	0.36	0.36	0.39	0.36	0.45	0.29	0.41	0.52	0.52	0.51	0.45	0.47	0.47	0.56	0.53	0.61	0.56	0.55	0.49	0.51	0.55	0.58	1.00	1 0 0					
81 0	0.36	0.36	0.41	0.38	0.44	0.31	0.41	0.54	0.51	0.56	0.33	0.50	0.55	0.59	0.59	0.59	0.42	0.53	0.45	0.43	0.59	0.50	0.62	1.00	1.00				
9111 0m	0.33	0.35	0.40	0.25	0.37	0.24	0.53	0.49	0.49	0.54	0.37	0.51	0.41	0.52	0.49	0.47	0.30	0.58	0.61	0.46	0.05	0.62	0.55	0.50	1.00	1.00			
9r 01	0.21	0.31	0.28	0.21	0.29	0.21	0.50	0.38	0.38	0.42	0.33	0.44	0.28	0.39	0.34	0.35	0.32	0.43	0.59	0.45	0.55	0.52	0.39	0.40	0.59	1.00	1.00		
91 10m	0.27	0.27	0.33	0.18	0.31	0.17	0.48	0.44	0.45	0.50	0.32	0.48	0.38	0.40	0.48	0.44	0.31	0.05	0.58	0.43	0.03	0.03	0.49	0.52	0.62	0.44	1.00	1 00	
10m	0.23	0.34	0.32	0.23	0.32	0.21	0.53	0.43	0.44	0.47	0.30	0.40	0.33	0.44	0.40	0.40	0.34	0.50	0.01	0.47	0.50	0.50	0.40	0.40	0.00	0.70	0.54	0.67	1.04
101	0.23	0.29	0.28	0.17	0.31	0.14	0.52	0.30	0.46	0.48	0.42	0.30	0.30	0.33	0.30	0.41	0.36	0.64	0.66	0.51	0.64	0.67	0.48	0.45	0.62	0.52	0.65	0.60	0.6
	0.40		0.40	U.1/	0.01	U.I.T	0.01	0.70	0.10	0. 10	UITA	UTU	0.00	U.T.	U.T#	U.T.I	0.00	0.04	0.00	UNUL	0.01	0.01	0. 10	UNTU	U.U.		0.00	0.00	U

Multidimensional sca

Results - ANOSIM

Mean relative abundance of the most numerous OTUs at three sections of the Yenisei River

17

OTU	Class	Plant root	F	amily	Genus	Section I transects	Section II transects	Section III transects			
		nodule				1-2	3-5	6-10			
1297	Actinobacteria	hactoria	imic	robiaceae	llumatobacter	5.80±1.49	3.99±0.59	4.57±0.48			
2	α-Proteobacteria	Dacteria				4.25±1.18	3.87±0.76	1.62±0.32			
2179	Actinobacteria					0.34±0.16	2.69±0.46	5.42±0.73			
18	Sphingobacteria	Sphingobacteriales	Chitinop	hagaceae				0.27			
13	α-Proteobacteria	Rhizobiales	Rhizobia	ceae	Abundar	nt in wate	rs with	a 0.20			
8	Actinobacteria	Actinomycetales	Microba	cteriaceae	high con	tribution	of	0. 0 8			
10			Comamo	onadaceae				0.29			
15	Increase a	abundance	Rhodobacteraceae		allochthonously derived p.04						
25	in river hi	ofilms ofter	Microco	ccaceae	dissolved organic matter ^{D.}						
21	in river bi	omms arter	Family II					0.07			
2588	an additio	on of				0.p9±0.33	1.6U±U.37	2.23±0.27			
671	nacticidad		Acidimic	robiaceae	Ilumatobacter	0.18±0.09	1.59±0.32	2.32±0.25			
4	pesticides							2			
6	α-Prote	otrophic rive		ystaceae	Methylocysti	Degrade	aromat	ic ı			
47	Actinot	otrophic rive		teriaceae		nollutan		5			
12	Actinot bact	eria				ponutan	LS	1			
11	β-Proteosacteria	Durkholdenales	Alcaliger	aceae	_	1.29±0.09	2.27±0.51	1.85±0.24			
16	α-Proteobacteria	Sphingomonadales	Sphingo	monadaceae		1.79±0.73	0.68±0.13	0.33±0.05			
5	β-Proteobacteria	Burkholderiales	Burkhold	deriaceae	Polynucleobact	er 1.76±0.23	2.01±0.51	3.53±0.52			
17	γ-Proteobacteria	Pseudomonadales	Moraxel	laceae	Acinetobacter	0.10±0.04	0.65±0.36	2.19±0.50			

Beta diversity of bacterial communities in the river is shaped by the surrounding landscape

One of the mechanisms by which the landscape might influence the bacterial diversity in the Yenisei River is via dispersal of different bacterial communities by tributaries arising from the different types of landscape

The next step should be linking biodiversity of bacteria and their biogeochemical functions

There are no generally accepted methods for determination of biogeochemical functions of individual bacterial species in environmental communities

Experimental study of biogeochemical functions of water bacteria

Experimental mesocosms and subsequent molecular genetic analysis of bacterial population dynamics

Possible experiment scenarios:

 1) different bacterial species respond to the addition of different amino acids: lysine – one group of species; glycine – another group

• 2) the same bacterial species will respond to amino acids additions

Certain species of uncultured water bacteria were specialized in consumption of certain amino acids in July 2004

Will amino acid addition provoke the same response of bacterial community in other seasons and years?

List of mesocosm experiments with amino acid additions

Nº	Experiment dates	Additions							
		Mesocosm 1	Mesocosm 3						
I	30 June – 6 July 2004	lysine 100 mg L ⁻¹	control	glycine 100 mg L ⁻¹					
II	17 – 23 August 2005	lysine 100 mg L ⁻¹	control	arginine 100 mg L ⁻¹					
111	17 – 23 May 2006	lysine 100 mg L ⁻¹	control	glycine 100 mg L ⁻¹					
IV	31 July – 5 August 2009	lysine 1 mg L ⁻¹	lysine 100 mg L ⁻¹	lysine 10 mg L ⁻¹					
V	14 – 20 May 2013	lysine 1 mg L ⁻¹	control	lysine 5 mg L ⁻¹					

DGGE of 16S rDNA amplified fragments of bacterioplankton samples from bacterial samples in experiments II, III and V

Experiment II 17 – 23 August 2005

No significant changes in bacterial community profiles in the experimental mesocosms compared to the initial sample and to the control mesocosm

Sampling date		Water temperature, °C	Shannon index(H)		Sampling date	Water temperature, °C	Sha ind	annon lex (H)				
Experi	iment	l (July 2004)			Experiment	t III (May 2006)						
30.06	16											
01.07	7 In July and early August, the bacterial											
02.07	community response on lysine											
03.07												
04.07	amendments was more pronounced											
05.07	than in May and at the end of August											
SD	4.(
Exper	0.											
17.08				'	-							
18.08		•Low water	temperatui	re	f			4.08				
19.08		 Other adve 	rse environ	m	iental fa	ctors?		3.87				
20.08								3.53				
21.08								3.89				
22.08.	.05	20.9	4.29		04.08.09	22.7		3.61				
23.08.	.05	20.5	4.21		05.08.09	22.7	4.08					
SD	– 0.143 SD –											

DGGE of 16S rDNA amplified fragments of bacterioplankton samples from bacterial samples in experiment IV (31 July – 5 August 2009)

Understanding the mechanisms and patterns of self-purification is of great theoretical and practical importance

It was shown that:

- 1) The individual organic substances are consumed by highly specialized bacterial species
 - 2) The consumption of certain organic substances can significantly slow down in certain seasons

dissolved organic matter

Conclusions

- 3022 operational taxonomic units of bacteria were found in water of the Yenisei River. Alpha diversity of bacterioplankton reached maximum values in the middle section of the river
- 2. Three bacterioplankton assemblages significantly differing in species composition and structure were detected in the Yenisei River. These assemblages were probably a result of biogeochemical influence of the surrounding landscape: mountain taiga (the upper part of the river), the plain taiga (middle section) and forest-tundra and tundra (the lower section). Dominant taxa of each assemblage specialized in the consumption of various groups of organic substances

Conclusions

- Bacteria consuming lysine and glycine were identified in the natural bacterial community in mesocosm experiments. These bacteria specialized in consuming certain amino acids
- 4. In mid-summer, the response of the reservoir bacterial community to lysine additions was stable and repeated in different years. In contrast, lysine additions did not cause significant changes in the quantitative and qualitative composition of the bacterial community in spring and late summer. The capability of aquatic ecosystems for self-purification of certain organic substances may vary considerably throughout a year

Thank you for your attention!

NGS studies of river bacterioplankton

- Ghai et al // PLoS ONE 2011 Amazon, 1 sample site, metagenome
- Fortunato et al // ISME J 2012 Columbia estuary, a few samples over 2 years
- Schultz et al // Aquat Microb Ecol 2013 a small section of Ohio River and an tributary, 7 sample sites
- Staley et al // J Appl Microbiol 2013 upper Mississippi and 2 tributaries, 400 km, 10 stations

- Read et al. // ISME J 2015 9948 km² Thames basin, 23 sites
- Savio et al. // Environ Microbiol 2015 (in print) Danube and tributaries, 2600 km river continuum, 96 sites

Loss of bacterial biodiversity associated with larger organisms

- 100 μm some of microplankton (large algae and protozoa, copepod nauplii)
- 50 μm most of microplankton (all rotifers)
- 20 μm all microplankton (most phytoplankton and ciliates)
- 10 μm most small flagellates, diatoms and other phytoplankton
- 5 μm most of nanoplankton, leaving just the freeliving bacteria
- 0.2 μm all picoplankton will be removed, including most bacterial cells. Just femtoplankton will remain, that is viruses and ultramicrobacteria